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Abstract
Using recent results concerning form factors of certain scaling fields in the
massive Dirac theory on the Poincaré disc, we find expressions for the form
factors of Ising spin and disorder fields in the massive Majorana theory on the
Poincaré disc. In particular, we verify that these recent results agree with the
factorization properties of the fields in the Dirac theory representing tensor
products of spin and of disorder fields in the Majorana theory.

PACS number: 11.10.Kk

1. Introduction

Quantum field theory (QFT) in curved spacetime is a subject of great importance which has
been studied from many viewpoints (see for instance [1]). One of the main applications of
QFT in Euclidean space is the study of classical statistical systems near their critical point.
It is important to extend such applications to the use of QFT on Euclidean-signature curved
spacetime for the study of statistical systems on curved space, as the effects of curvature on
the properties of critical points are not well understood. A simple but non-trivial curved space
is the Poincaré disc. It is maximally symmetric, which allows for the extension of some
techniques on two-dimensional flat space to this space, and has a negative Gaussian curvature.
As was argued in [2], a negative curvature can be used as an infrared regulator for Euclidean
QFT; it is interesting to analyse further the effects of such a curvature on the critical point of
a statistical system.

Recently, correlation functions of certain scaling fields in the Dirac theory on the Poincaré
disc were studied [3, 4]. The scaling fields in question, Oα = O†

−α,−1 < α < 1, are spinless,
U(1)-neutral and have scaling dimension α2. They are not mutually local with respect to the
Dirac field. Their mutual locality index with the Dirac field is α, that is, the Dirac field � takes
a factor, � → e2π iα�, when continued counterclockwise around the field Oα . In [3], using a
generalization of the method of isomonodromic deformations to the study of determinants of
Dirac operators on the Poincaré disc, the authors obtained differential equations of Painlevé
type for correlation functions of such fields. In [4], we solved the associated connection

0305-4470/04/020359+12$30.00 © 2004 IOP Publishing Ltd Printed in the UK 359

http://stacks.iop.org/ja/37/359


360 B Doyon

problem for the 2-point function, obtained its long distance expansion by developing a form
factor decomposition and evaluated the 1-point function.

A physical application of these fields, with which the present paper is concerned, comes
from the fact that correlators of some of them are simply related to the scaling limit of
correlators of local variables in the lattice Ising model [5–7]. Let us explain in more detail
what this relation is on flat space, where the results are well known. The lattice Ising model at
zero magnetic field and at a temperature very near to its critical temperature (more precisely, in
the scaling limit) is described by the quantum field theory of a free massive Majorana fermion
[8, 9] (cf [10]). Recall that in the Ising model, one can consider the spin variable and its dual,
the disorder variable [11], related by the duality transformation that takes the system from
its low-temperature regime to its high-temperature regime and vice versa. Correspondingly
in the Majorana theory, one can define the spin field σ and the disorder field µ. These
fields are local, but not mutually local with respect to the fermion fields or with respect to
each other. Correlation functions involving these fields give the scaling limit of correlation
functions involving spin and disorder variables in the Ising model. Now, the tensor product
of two independent copies of the Majorana theory can be equivalently described by a single
copy of the Dirac theory. One can then represent the tensor product of two spin fields acting
non trivially on independent copies of the Majorana theory as a single field in the Dirac
theory, and similarly for the tensor product of two disorder fields. Taking the Majorana theory
(with positive mass) to represent the scaling limit of the Ising model in its low-temperature
regime (that is, for temperatures near to but smaller than the critical temperature), one has the
following equivalences [5, 6]:

σ ⊗ σ = O(+) µ ⊗ µ = O(−) (1.1)

where the fields O(+) and O(−) belong to the Dirac theory. They can be expressed in terms of
the fields Oα described above:

O(+) = 1√
2

(
O 1

2
+ O−1

2

)
O(−) = 1√

2

(
O 1

2
− O−1

2

)
. (1.2)

In fact, once the field O(+) is given to represent σ ⊗ σ , the field O(−) for representing µ ⊗ µ

can be deduced using the OPEs in the Dirac theory and in the Majorana theory1.
Having recalled some results on flat space, let us now turn to the Dirac theory on the

Poincaré disc. Again it is equivalent to a tensor product of two copies of the Majorana theory,
but on the Poincaré disc. Then we expect that the fields O(+) and O(−) given by (1.2) factorize
as a tensor product of fields belonging to the Majorana theory, the way they do in (1.1).
Although such a factorization is not a priori obvious from the definitions of O(+) and O(−), it
is a local property and should not be affected by the curvature. The two fields σ and µ thus
defined in the Majorana theory on the Poincaré disc will still be called spin and disorder fields
respectively. We expect that these fields be further related to spin and disorder variables in a
lattice Ising model on the Poincaré disc, although the precise relation is not yet clarified. In
any case, the study of the fields Oα in [3, 4] should give information about spin and disorder
fields in the Majorana theory on the Poincaré disc. It is not straightforward to obtain most
of this information, and a full analysis, based on more efficient methods, will be exposed in
another publication [12]. However, it is a simple matter to specialize some of the results of [4]
to obtain expressions for form factors, and in particular vacuum expectation values, of spin
and disorder fields. This is what we do in this paper. This involves, in particular, a verification
1 Such considerations also lead to the relations:

O(+)(x1) · · ·O(+)(xn) = (σ (x1) · · · σ(xn)) ⊗ (σ (x1) · · · σ(xn))

O(−)(x1) · · ·O(−)(xn) = (−1)n(µ(x1) · · ·µ(xn)) ⊗ (µ(x1) · · · µ(xn)).
(1.3)

.
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that results of [4] indeed respect the factorization properties of the fields O(+) and O(−). More
precisely, since the Hilbert space of the Dirac theory on the Poincaré disc is a tensor product
of two copies of the Hilbert space of the Majorana theory on the Poincaré disc, we verify that
in the tensor product basis of the Dirac Hilbert space, matrix elements between vacuum and
excited states, or form factors, of the fields O(+) and O(−) factorize.

Form factors are useful quantities to study, in particular because of their relation with
long distance expansions of correlation functions. We will not discuss such expansions in this
paper; in a future publication [12], form factors and correlation functions of spin and disorder
fields on the Poincaré disc will be studied by a different, much simpler method. Some of
the results of [12] concerning form factors are already available to us, and will be compared
with the expressions obtained in the present paper; this will give a further verification of the
more general form factor results of [4]. However, the method of [12] does not give an explicit
expression for the vacuum expectation value of the spin field, which in fact is simple to read
off from a result of [4]. In the Majorana theory with fermion mass m on the Poincaré disc with
Gaussian curvature −1/R2, it is given by

〈σ 〉2 = (R/2)−
1
4

∞∏
n=1

(
1 − 1

4(mR+n)2

1 − 1
4n2

)n

. (1.4)

Here we use the following normalization of the fields O(+) and O(−) in the Dirac theory on the
Poincaré disc:

〈O(+)(x)O(+)(y)〉 ∼ d(x, y)−
1
2 〈O(−)(x)O(−)(y)〉 ∼ −d(x, y)−

1
2 as x → y

(1.5)

where d(x, y) is the geodesic distance between the points x and y. This corresponds to the
following normalization for the spin and disorder fields:

〈σ(x)σ (y)〉 ∼ d(x, y)−
1
4 〈µ(x)µ(y)〉 ∼ d(x, y)−

1
4 as x → y.

Note that in the theory on flat space, form factors were first calculated in [13], and the vacuum
expectation value of the spin field was first calculated in [7].

The plan of the paper is as follows. In section 2, we recall the structure of the Hilbert
space of the Dirac theory on the Poincaré disc, and explicitly factorize it in a tensor product
of two copies of the Hilbert space of the Majorana theory. In section 3, we briefly recall and
analyse some results of [4] concerning form factors in the Dirac theory of the fields O± 1

2
used

in the definition of O(+) and O(−) (1.2). In section 4, we verify the factorization properties
for the field O(+) and calculate multi-particle form factors of the spin field. Finally, in
section 5, we verify the factorization properties for the field O(−) and calculate multi-particle
form factors of the disorder field.

2. Hilbert space

In [4], the Hilbert space of the free Dirac theory on the Poincaré disc was constructed in various
quantization schemes, and form factors of the scaling fields Oα were calculated in two (related)
schemes. It was pointed out that in a quantization scheme where the Hamiltonian is taken
as the generator of a non-compact subgroup of the SU(1, 1) isometry group of the Poincaré
disc, the spectrum is discrete. This quantization scheme is the most convenient one for
obtaining the long distance expansion of correlation functions by using a resolution of the
identity on the Hilbert space. Also, in this scheme, form factors of the fields Oα seem to have
the simplest expressions. Here we will recall the structure of the Hilbert space of the Dirac
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Figure 1. The mapping from the Poincaré disc to the strip is described by x + iy = tan(ξx + iξy),

x − iy = tan(ξx − iξy). Lines with an arrow represent orbits of a non-compact subgroup of the
isometry group of the Poincaré disc.

theory on the Poincaré disc, and its relation to the Hilbert space of the Majorana theory on the
Poincaré disc, within this quantization scheme only.

In order to describe the quantization scheme, it is convenient to consider a system of
coordinates −π/4 < ξx < π/4, ξy ∈ R covering a ‘Poincaré strip’ instead of the Poincaré
disc, with the mapping shown in figure 1. For the ‘Poincaré strip’ of Gaussian curvature
−1/R2, the metric is given by

ds2 = (2R)2

cos2(2ξx)

(
dξ 2

x + dξ 2
y

)
.

In this system of coordinates, the action for a free Dirac fermion field � = (
�R

�L

)
of mass m is

A =
∫ ∞

−∞
dξy

∫ π
4

− π
4

dξx�̄

(
γ x ∂

∂ξx
+ γ y ∂

∂ξy
+

2ν

cos(2ξx)

)
� (2.1)

where ν = mR and �̄ = �†γ y. Here the Dirac matrices are taken to be

γ x =
(

0 i
−i 0

)
γ y =

(
0 1
1 0

)
.

For simplicity, we will assume that ν > 1/2, as was assumed in [4]2 (we expect the theory
to have more structure than what is described below in the case ν < 1/2; this case will be
studied in more detail in [12]).

The translation ξy → ξy + q is a translation along an orbit of a non-compact subgroup
of the isometry group. The quantization scheme in which we are interested is then obtained
by taking ξy as the ‘time’. The corresponding Hilbert space H is a module for the canonical
equal-‘time’ anti-commutation relations

{�(ξx, ξy),�
†(ξ ′

x, ξy)} = 1δ(ξx − ξ ′
x).

A basis for H can be taken as the discrete set of states diagonalizing the Hamiltonian
corresponding to the action (2.1):

|k1, . . . , kn〉ε1,...,εn
kj ∈ N εj = ±j n = 0, 1, 2, . . . k1 < · · · < kn. (2.2)

They correspond to eigenvalues λ1 + · · · + λn of the Hamiltonian, where

λj = 1 + 2ν + 2kj .

The vacuum state, with n = 0, will be denoted by |vac〉. In particular, correlation functions,
denoted by 〈· · ·〉, are vacuum expectation values of ‘time’-ordered operators, where the ‘time’-
ordering brings operators at lower values of ξy to the right of those at higher values of ξy. The
2 Note that in [4], the combination mR was denoted by µ instead of ν.
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number of arguments, n, in the state (2.2) should be interpreted as the number of free fermionic
particles forming the state, the integer kj as the discrete energy level of the j th particle and
the sign εj as its U(1) charge. These states are normalized by

εn,...,ε1〈kn, . . . , k1|k′
1, . . . , k

′
n〉ε′

1,...,ε
′
n
= δk1,k

′
1
· · · δkn,k′

n
δε1+ε′

1
· · · δεn+ε′

n

and states with different number of particles are orthogonal. States with different orderings
of the energy levels kj are defined by the fact that exchanging simultaneously the positions
of two values of energy levels ki, kj and of U(1) charges εi, εj in |k1, . . . , kn〉ε1,...,εn

brings a
factor of (−1).

In parallel to the case of the theory on flat space, the free massive Dirac theory on the
Poincaré disc is equivalent to two independent copies of a free massive Majorana theory on
the Poincaré disc. Consider four fermion fields ψa,ψb, ψ̄a, ψ̄b, defined via

�R = 1√
2
(ψa + iψb) �L = 1√

2
(ψ̄b − iψ̄a).

It is easy to verify that correlators of these fields factorize; for instance,

〈ψa(x1) · · · ψa(xn)ψb(x
′
1) · · · ψb(x

′
m)〉 = 〈ψa(x1) · · · ψa(xn)〉〈ψb(x

′
1) · · · ψb(x

′
m)〉.

This factorization can be expressed by writing the fields ψa,ψb, ψ̄a, ψ̄b as tensor products of
fields in two independent copies of the Majorana theory:

ψa = ψ ⊗ 1 ψb = 1 ⊗ ψ ψ̄a = ψ̄ ⊗ 1 ψ̄b = 1 ⊗ ψ̄.

Here ψ, ψ̄ are (real) Majorana fields that satisfy the equations of motion

∂

∂ξ
ψ̄ = − ν

cos(2ξx)
ψ

∂

∂ξ̄
ψ = − ν

cos(2ξx)
ψ̄

with ξ = ξx + iξy and ξ̄ = ξx − iξy and have short distance normalization given by

〈ψ(ξ1, ξ̄1)ψ(ξ2, ξ̄2)〉 ∼ − 1

2π i

1

ξ1 − ξ2
〈ψ̄(ξ1, ξ̄1)ψ̄(ξ2, ξ̄2)〉 ∼ 1

2π i

1

ξ̄1 − ξ̄2
.

A precise correspondence between a product of fermion fields in the Dirac theory and a tensor
product of products of fermion fields in the Majorana theory must take into account the signs
coming from the fact that two Dirac fields anti-commute. We will define, for instance,

ψa(x1) · · · ψa(xn)ψb(x
′
1) · · · ψb(x

′
m) = (ψ(x1) · · · ψ(xn)) ⊗ (ψ(x ′

1) · · · ψ(x ′
m))

and appropriately include extra minus signs for other orderings of ψa with respect to ψb.
Consequent to this decomposition of the Dirac fermion field, the Hilbert space of the Dirac

theory can be written as a tensor product of two copies of the Hilbert space of the Majorana
theory: H = HM ⊗HM . It can be verified that the Hilbert space HM , within the quantization
scheme we are considering, has a structure similar to that of H. An explicit construction
of HM will be done in [12]. For now, we simply need to know that a basis for HM can be
taken as the discrete set of states diagonalizing the Hamiltonian of the Majorana theory in this
quantization scheme:

|k1, . . . , kn〉M kj ∈ N n = 0, 1, 2, . . . k1 < · · · < kn

with vacuum denoted by |vac〉M . These states correspond to eigenvalues λ1 + · · · + λn. States
with different orderings of energy levels are defined by the fact that exchanging the positions
of two arguments ki, kj brings a factor of (−1). In order to obtain a precise correspondence
between the Dirac Hilbert space and a tensor product of two copies of the Majorana Hilbert
space, define one-particle states |k〉a and |k〉b in the Dirac theory by

|k〉a = 1√
2
(|k〉+ + |k〉−) |k〉b = i√

2
(|k〉+ − |k〉−) (2.3)
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and multi-particle states involving states of types a and b by forming exterior products of these
one-particle states. Then,

|vac〉 = |vac〉M ⊗ |vac〉M
and

|k1, . . . , kn, k
′
1, . . . , k

′
m〉a, a, . . .︸ ︷︷ ︸

n

,b, b, . . .︸ ︷︷ ︸
m

= |k1, . . . , kn〉M ⊗ |k′
1, . . . , k

′
m〉M.

Here we have fixed some of the phases by requiring the charge conjugation symmetry in the
Dirac theory to be implemented by

|k〉+ ↔ |k〉− �
†
R ↔ �R �

†
L ↔ −�L.

In what follows, we will omit the subscript M on Majorana states unless required for clarity.
The expected correspondence (1.1) between fields O(+) and O(−) in the Dirac theory and

fields σ and µ in the Majorana theory, and the correspondence described above between the
Hilbert spaces H and HM of both theories, allow us to write matrix elements in H of the fields
O(+) and O(−) in terms of matrix elements in HM of the fields σ and µ. Having expressions
for form factors of the fields O(+) and O(−) [4], this in turn gives us expressions for form
factors of the fields σ and µ. We will verify in the next sections that one can indeed define
form factors of a spin field σ acting on the Majorana Hilbert space HM by the identification

〈vac|O(+)|k1, . . . , kn, k
′
1, . . . , k

′
m〉a, a, . . .︸ ︷︷ ︸

n

,b, b, . . .︸ ︷︷ ︸
m

= 〈vac|σ |k1, . . . , kn〉〈vac|σ |k′
1, . . . , k

′
m〉

(2.4)

where O(+) is defined in (1.2). In particular, from the vacuum expectation value of O(+), the
vacuum expectation value 〈σ 〉 ≡ 〈vac|σ |vac〉 of the field σ is given by (1.4). Here and below,
the fields of which we take matrix elements are assumed to be at the centre of the Poincaré disc.
Using their transformation properties under the SU(1, 1) isometry group, they can always be
translated to any other points in the Poincaré disc. In a similar way, we will verify that one
can define form factors of a disorder field µ acting on HM by3

〈vac|O(−)|k1, . . . , kn, k
′
1, . . . , k

′
m〉a, a, . . .︸ ︷︷ ︸

n

,b, b, . . .︸ ︷︷ ︸
m

= (−1)n〈vac|µ|k1, . . . , kn〉〈vac|µ|k′
1, . . . , k

′
m〉 (2.5)

where the field O(−) is defined in (1.2). In particular, the vacuum expectation value of the
disorder field is zero: 〈µ〉 = 0.

3. Two-particle form factors of the scaling fields O± 1
2

in the Dirac theory

In this section we will specialize some of the results of [4] to the two-particle form factors
of the scaling fields O± 1

2
evaluated in the discrete basis discussed in the previous section.

These form factors will then be used to construct form factors of spin and disorder fields in
the subsequent sections.

Define the functions f±(k1, k2) by

f±(k1, k2) ≡
〈vac|O± 1

2
|k1, k2〉+,−〈

O± 1
2

〉
3 The sign (−1)n comes from the identification

O(−)(x)ψa(x1) · · · ψa(xn)ψb(x
′
1) · · · ψb(x

′
m) = (−1)n(µ(x)ψ(x1) · · · ψ(xn)) ⊗ (µ(x)ψ(x′

1) · · ·ψ(x′
m))

which can be obtained, for instance, by analysing the OPEs in the Dirac and in the Majorana theories.
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where the fields O±1
2

are at the centre of the Poincaré disc. Formulae in appendix B.2 of
[4] give expressions for these form factors (they were obtained using methods of angular
quantization). Multiplying these expressions by a phase factor ik1+k2+2 for convenience (this
corresponds to redefining the eigenstates by multiplying them by a phase), we have

f±(k1, k2) = 22ν+1 ik2−k1+1

√
(1 + 2ν + k1)(1 + 2ν + k2)

k1!k2!

G±;k1,k2

(1 + 2ν)2 cos(πν)
(3.1)

where

G±;k1,k2 =
k1∑

m1=0

k2∑
m2=0

(−k1)m1(−k2)m2 2m1+m2

(2ν + 1)m1(2ν + 1)m2m1!m2!
H±;m1,m2

with

H±;m1,m2 = 
(
1 + ν ± 1

2 + m1
)


(
1 + ν ± 1

2 + m2
)


(
1 − ν ± 1

2

)


(
1 + ν ± 1

2

)
× 3F2

(
1, 1 + ν ± 1

2
+ m1, 1 + ν ± 1

2
+ m2; 1 + ν ± 1

2
, 1 − ν ± 1

2
; 1

)
.

The 3F2 hypergeometric function above can be evaluated in closed form, for any given integers
m1 and m2, in terms of Gamma functions and rational functions of ν. It can be checked that

f+(k1, k2) = −f−(k2, k1).

As this identity relates f−(k2, k1) to f+(k1, k2), we need only use f+(k1, k2) in the following
sections, which we will denote by f (k1, k2). It can be verified that this function satisfies the
following identities:

f (k1, k2) = (−1)
k1+k2

2

√
f (k1, k1)

√
f (k2, k2) (k1 + k2 even)

f (k1, k2) = −f (k2, k1) (k1 or k2 odd) (3.2)

f (k1, k2) = 0 (k1 and k2 odd).

Of course, the last identity is just a consequence of the first and the second. In the first identity,
as well as in equation (3.1) and in other equations below, square roots

√
z assume their branch

delimited by the region −π � arg(z) < π with
√

z � 0 for arg(z) = 0.

4. Form factors of spin field

We now verify the factorization properties of the field O(+) as defined by (1.2) and calculate
the multi-particle form factors of the spin field σ in the Majorana theory. Using formulae
of appendix B.3 of [4], which essentially state that multi-particle form factors of the fields
Oα can be evaluated in terms of their two-particle form factors through Wick’s theorem, the
multi-particle form factors of O(+) in the Dirac theory can be written in the form

1

〈O(+)〉 〈vac|O(+)|k1, . . . , kn, k
′
1, . . . , k

′
n〉+, +, . . .︸ ︷︷ ︸

n

,−,−, . . .︸ ︷︷ ︸
n

= (−1)n(n−1)/2 det(A+) + det(A−)

2

(4.1)

where the n × n matrices A+ and A− have matrix elements

[A+]ij = f (ki, k
′
j ) [A−]ij = −f (k′

j , ki).

In the appendix, it is shown that

det(A+) + det(A−)

2
= det

(
A+ + A−

2

)
. (4.2)
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This equation simply means that we can calculate the form factor in (4.1) by using Wick’s
theorem to pair energy levels in the asymptotic state, the contractions being given by

|k1〉+ |k2〉− = 1

2
(f (k1, k2) − f (k2, k1)) =

{
0 (k1 + k2 even)
f (k1, k2) (k1 + k2 odd)

(4.3)

where we used properties (3.2) (other contractions being zero). Changing basis to |k〉a and
|k〉b through (2.3), we can calculate the multi-particle form factors by using Wick’s theorem
with the contractions

|k1〉a |k2〉a = |k1〉b |k2〉b = |k1〉+ |k2〉−
and

|k1〉a |k2〉b = 0.

We then obtain

1

〈O(+)〉 〈vac|O(+)|k1, . . . , kn, k
′
1, . . . , k

′
m〉a, a, . . .︸ ︷︷ ︸

n

,b, b, . . .︸ ︷︷ ︸
m

= Pf(�)Pf(�′) (4.4)

for n and m even, the form factor being zero otherwise. Here Pf means the Pfaffian of a matrix.
The n × n matrix � and the m × m matrix �′ have matrix elements

[�]j,l = |kj 〉+ |kl〉− [�′]j,l = |k′
j 〉+ |k′

l〉− .

The factorized form on the right-hand side of (4.4) strongly suggests that we can identify the
field O(+) in the Dirac theory on the Poincaré disc with a tensor product of spin fields σ in two
independent copies of the Majorana theory on the Poincaré disc, as in (1.1). Comparing with
(2.4), equation (4.4) then leads to the form factors of the spin field:

〈vac|σ |k1, . . . , kn〉
〈σ 〉 = Pf(�) (4.5)

for n even, zero otherwise. In particular, this gives the two-particle form factor as

〈vac|σ |k1, k2〉
〈σ 〉 =

{
0 (k1 + k2 even)

f (k1, k2) (k1 + k2 odd)
(4.6)

(where we recall that f (k1, k2) = f+(k1, k2) is given by (3.1)), and says that we can calculate
multi-particle form factors of the spin field by using Wick’s theorem to pair energy levels in
the asymptotic states, the contractions being given by the two-particle form factors.

Although it is not straightforward, it is possible to verify that the two-particle form factor
(4.6) is in agreement with results of [12], which directly give the expression

〈vac|σ |k1, k2〉
〈σ 〉 = (−1)

k1+k2+1
2

√
k2(2ν + k2)

π(1 + 2ν + k1 + k2)

×
√√√√ 

(
ν + 1

2 + k1
2

)


(
ν + k2

2

)


(
1
2 + k1

2

)


(
k2
2

)


(
ν + 1 + k1

2

)


(
ν + 1

2 + k2
2

)


(
1 + k1

2

)


(
1
2 + k2

2

)
for k1 even and k2 odd. For k1 odd and k2 even, one can use 〈vac|σ |k1, k2〉 = −〈vac|σ |k2, k1〉,
and in other cases the two-particle form factor is zero. Properties and significance of this
expression will be discussed in [12].
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5. Form factors of disorder field

Now we proceed to verify the factorization properties of the field O(−) and to calculate the
multi-particle form factors of the disorder field µ in the Majorana theory. As in the previous
section, using definitions (1.2) and formulae of appendix B.3 of [4], the multi-particle form
factor of the field O(−) in the Dirac theory can be written in the form

1

〈O(+)〉 〈vac|O(−)|k1, . . . , kn, k
′
1, . . . , k

′
n〉+, + . . .︸ ︷︷ ︸

n

,−,− . . .︸ ︷︷ ︸
n

= (−1)n(n−1)/2 det(A+) − det(A−)

2

(5.1)

where, again as in the previous section, the n × n matrices A+ and A− have matrix elements

[A+]ij = f (ki, k
′
j ) [A−]ij = −f (k′

j , ki).

In the appendix, it is shown that

det(A+) − det(A−)

2
= Resw det(A+(w)) (5.2)

where A+(w) is a matrix with matrix elements depending on an auxiliary (formal) variable w:

[A+(w)]ij = f (ki, k
′
j )

{
w−1 (ki and k′

j even)
1 (ki or k′

j odd).

In equation (5.2), the symbol Resw is just a convenient way of saying that one must keep only
the coefficient of the monomial w−1 in the determinant det(A+(w)), that is, one must take the
formal residue in the variable w. Equation (5.2) means that we can calculate the form factor
(5.1) by using Wick’s theorem with contractions given by

|k1〉+ |k2〉− = f (k1, k2)

{
w−1 (k1 and k2 even)
1 (k1 or k2 odd)

(other contractions being zero) and by taking the formal residue in w of the resulting sum of
products of contractions. Changing basis to |k〉a and |k〉b, we can calculate the multi-particle
form factors by using Wick’s theorem with the contractions

|k1〉a |k2〉a = |k1〉b |k2〉b = 1

2
(f (k1, k2) − f (k2, k1)) = 〈vac|σ |k1, k2〉

〈σ 〉
and

|k1〉a |k2〉b = − i

2
w−1(f (k1, k2) + f (k2, k1)) = −iw−1(−1)

k1
2

√
f (k1, k1)(−1)

k2
2

√
f (k2, k2)

and by taking the residue in w (here we used the first and second equations of (3.2)). Then we
find

1

〈O(+)〉 〈vac|O(−)|k1, . . . , kn, k
′
1, . . . , k

′
m〉a, a, . . .︸ ︷︷ ︸

n

,b, b, . . .︸ ︷︷ ︸
m

= −
 n∑

j=1

(−1)j−1(−1)
kj

2
√

if (kj , kj )
〈vac|σ |k1, . . . , k̂j , . . . , kn〉

〈σ 〉


×

 m∑
j=1

(−1)j−1(−1)
k′
j

2

√
if (k′

j , k
′
j )

〈vac|σ |k′
1, . . . , k̂

′
j , . . . , k

′
m〉

〈σ 〉

 (5.3)
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for n and m odd, the form factor being zero otherwise (where the hat means omission of the
argument). Again, as in the case of the field O(+), the factorized form on the right-hand side
of (5.3) strongly suggests that we can identify the field O(−) in the Dirac theory on the Poincaré
disc with a tensor product of disorder fields µ in two independent copies of the Majorana theory
on the Poincaré disc, as in (1.1). Comparing with (2.5), equation (5.3) then leads to the form
factors of the disorder field:

〈vac|µ|k1, . . . , kn〉 =
n∑

j=1

(−1)j−1〈vac|µ|kj 〉 〈vac|σ |k1, . . . , k̂j , . . . , kn〉
〈σ 〉 (5.4)

for n odd, zero otherwise. Here the one-particle form factor 〈vac|µ|k〉, up to a sign factor
independent of k, is given by

〈vac|µ|k〉 = 〈σ 〉(−1)
k
2

√
if (k, k) (5.5)

(where we recall that f (k, k) = f+(k, k) is given by (3.1)). From the last property of (3.2),
the one-particle form factor 〈vac|µ|k〉 is non-zero only for k even, and it is real since if (k, k)

is real and positive. The ambiguous sign factor was chosen to make 〈vac|µ|0〉 positive.
This ambiguity is related to the ambiguity in the choice of branch on which to evaluate the
correlation function 〈ψ(x)µ(y)〉 in the Majorana theory. The precise relation between these
two ambiguities will be clarified in [12].

It is possible to show that the one-particle form factor (5.5) is in agreement with results
of [12], which directly give the expression

〈vac|µ|k〉
〈σ 〉 = (−1)

k
2

√


(
ν + 1

2 + k
2

)


(
1
2 + k

2

)
π

(
ν + 1 + k

2

)


(
1 + k

2

) for k even, 0 otherwise.

Properties and significance of this expression will be discussed in [12].

6. Conclusion

In [4], we had found expressions for form factors of particular scaling fields in the Dirac theory
on the Poincaré disc. One can relate the Hilbert space of the Dirac theory on the Poincaré disc
to two independent copies of the Hilbert space of the Majorana theory on the Poincaré disc in
a way similar to what can be done on flat space. If one can then factorize the fields O(+) and
O(−) (1.2) in the Dirac theory in terms of spin and disorder fields in the Majorana theory in
the way it is done on flat space, as in (1.1), then one can obtain, from the expressions of [4],
expressions for form factors of spin and disorder fields in the Majorana theory on the Poincaré
disc. In the present paper, we verified that the expressions for form factors of O(+) and O(−)

in the Dirac theory on the Poincaré disc that we found previously agree with this factorization
property. As a result, we obtained expressions for form factors and vacuum expectation values
of spin and disorder fields in the Majorana theory on the Poincaré disc.

Spin and disorder fields in the Majorana theory on the Poincaré disc should be related to
spin and disorder variables in the lattice Ising model on the Poincaré disc. The analysis of their
correlation functions and of their form factors should then give information concerning the
statistical properties of such an Ising model near ‘criticality’. This clearly is a very interesting
prospect, given that the effect of a curvature on the critical point of a statistical model is not
well understood. Such an analysis is currently being developed in some depth [12]; the present
paper in particular provides a link between the work [4] and this future publication.
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Appendix. Proof of formulae (4.2) and (5.2)

We see that [A+]ij = [A−]ij when ki or k′
j is odd, and that [A+]ij = −[A−]ij when ki and k′

j

are even. Also, when ki and k′
j are even, the matrix elements factorize. Arrange the order of

the ki and k′
j so that all even ones are at the beginning: ki is even if and only if i < I and k′

j

is even if and only if j < J . Then the matrices A+ and A− have the following form:

A+ = M + S A− = M − S (A.1)

where

[S]ij = sis
′
j si = 0 if i � I s ′

j = 0 if j � J

[M]ij = 0 if i < I and j < J.

Using the technique of minors to calculate determinants, the determinant of A+, for instance,
can always be written as a sum

∑
i ai . In this sum, each term ai can be factorized as

ai = bi det(Bi), where det(Bi) is the determinant of a sub-matrix Bi of A+ that has the same
horizontal dimension as that of S, and that contains a certain number (if any) of full lines of
S. When written in such a way, in each term bi det(Bi), the only factor where matrix elements
[S]jk of S enter is in the determinant det(Bi). A similar expression can be written for det(A−),
with the sub-matrix S replaced by the sub-matrix −S. If more than one line of S is contained
in Bi , then det(Bi) = 0 because the elements of S factorize. If only one line of S is contained
in Bi , then the same term will appear in both the expressions for det(A+) and for det(A−) but
with opposite signs. If no line of S is contained in Bi , then the same term will appear in both
the expressions for det(A+) and for det(A−) (with the same sign).

From these properties, in the sum of the expressions for the determinants of A+ and
A−, the only terms remaining are those containing no elements of S as factors. Hence,
det(A+) + det(A−) = 2 det(M). This proves equation (4.2). On the other hand, in the
difference of the expressions for the determinants of A+ and A−, the only terms remaining
are the terms which are linear in elements of S. This prescription can be implemented by
multiplying the elements of the sub-matrix S of A+ by the inverse of a formal variable, w−1,
thus forming a matrix which we denote by A+(w), and by taking the formal residue of the
determinant of A+(w). This proves equation (5.2).
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